Delayed Effects of Corticosterone on Slow After-Hyperpolarization Potentials in Mouse Hippocampal versus Prefrontal Cortical Pyramidal Neurons

نویسندگان

  • Anup G. Pillai
  • Marloes J. A. G. Henckens
  • Guillén Fernández
  • Marian Joëls
چکیده

The rodent stress hormone corticosterone changes neuronal activity in a slow and persistent manner through transcriptional regulation. In the rat dorsal hippocampus, corticosterone enhances the amplitude of calcium-dependent potassium currents that cause a lingering slow after-hyperpolarization (sAHP) at the end of depolarizing events. In this study we compared the putative region-dependency of the delayed effects of corticosterone (approximately 5 hrs after treatment) on sAHP as well as other active and passive properties of layer 2/3 pyramidal neurons from three prefrontal areas, i.e. the lateral orbitofrontal, prelimbic and infralimbic cortex, with the hippocampus of adult mice. In agreement with previous studies, corticosterone increased sAHP amplitude in the dorsal hippocampus with depolarizing steps of increasing amplitude. However, in the lateral orbitofrontal, prelimbic and infralimbic cortices we did not observe any modifications of sAHP amplitude after corticosterone treatment. Properties of single action potentials or % ratio of the last spike interval with respect to the first spike interval, an indicator of accommodation in an action potential train, were not significantly affected by corticosterone in all brain regions examined. Lastly, corticosterone treatment did not induce any lasting changes in passive membrane properties of hippocampal or cortical neurons. Overall, the data indicate that corticosterone slowly and very persistently increases the sAHP amplitude in hippocampal pyramidal neurons, while this is not the case in the cortical regions examined. This implies that changes in excitability across brain regions reached by corticosterone may vary over a prolonged period of time after stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

Minocycline did not prevent the neurotoxic effects of amyloid β on intrinsic electrophysiological properties of hippocampal CA1 pyramidal neurons in a rat model of Alzheimer’s disease

Introduction: Although aging is the most important risk factor for Alzheimer's disease (AD), there is evidence indicating that neuroinflammation may contribute to the development and progression of the disease. Several studies indicated that minocycline may exert neuroprotective effects in rodent models of neurodegenerative diseases. Nevertheless, there are also other studies implying that ...

متن کامل

Effects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices

Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Synaptosomal calcium uptake unaltered by adenosine and 2-chloroadenosine.

Purinergic compounds can decrease neural activity peripherally and centrally [l-4]. The spontaneous firing rates of cerebellar Purkinje neurons fall precipitously after adenosine or its analogs are applied locally [5]. The amplitude of hippocampal excitatory postsynaptic potential (EPSP) responses is depressed by adenosine and its analogs [S, 61. The depression of EPSP amplitudes of pyramidal n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014